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We shall consider here the following approximation problem. Let X
denote a compact Hausdorff space, fL a regular Borel measure on X, and let
{gl ,..., gn} and {hI"'" hm} be fixed sets of linearly independent real-valued
continuous functions on X. Furthermore, let ,AI = span{ gl ,... , g,,},
E0 = span{h l , ... , hm}, and R+ = {NjD I N E,AI, DE g and D(x) > °for all
x E X}. Assume R+ is nonvoid. Then given fE Lp{X, fL) with 1 :0:;; p < 00,

does there exist an ro E R+ such that Ilf - roII" = infrER+ II! - r lip?
As the following example shows, the answer to this question is negative

in general.

EXAMPLE 1. Let X = [0, 1], p ? 1, fL the Lebesgue measure on [0, 1],
f(x) = x- tp and R+ = {aj(b + extP) I b + extp > 0 for all x E [0, I]}. Then
the sequence {r,,} = {lj(x tp + n-1)} C R+ satisfies Ilf - r" ilp --+ 0. (To see
this, note that I r" - f I = 1jxtP(1 + nxtp) is monotone decreasing and
pointwise convergent to zero on (0, 1].) But f rt R+ so that f has no best
approximation in R+. Clearly, this R+ has the defect that it is not a closed
subset of Lp[O, 1].

Under an assumption given below we will explicitly determine the closure
of R+ in the appropriate L p space, and show that best approximations always
exist in the closure. As a corollary we will be able to show that a sufficient
condition given by Cheney and Goldstein in [1] (and generalized by Dunham
in [3]) for the existence of best approximations in R+ is, in fact, both necessary
and sufficient (after a slight weakening). The results presented here are from
the author's doctoral thesis [4].

The analysis will be carried out under the following assumption on the
measure space (X, fL) and the set E0. (See [2] and [3] also.)

Assumption (*). If D E E0 is such that D ~ 0, then fL(Z(D» = 0 where
ZeD) = {x E X I D(x) = O}.

Note that (*) excludes the important case when X is a discrete set and fL is
counting measure. We shall consider this problem in a forthcoming paper.
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DEFINITION 1. For arbitrary but fixedp with 1 :( p :;:;; 00, R shall denote
the set {N/D I N E JV, D E f'#, D(x) ? ofor all x E Xand Ix IN/D 11' dJL < oo}.

Note that by (*) every element of the form N/D with D -:- 0 is defined
except perhaps on a set of measure zero so that R may be considered to be
a subset of Lp(X, JL) (which we henceforth shorten to L 1').

Also it is clear that theset R depends onp. Let this dependence be denoted
by R 1' • Since LoCX, JL) C Lq{'X, JL) whenp > q and Xis a finite measure space,
it follows that R1J C Rq if p > q. Moreover, Example 1 above shows that, in
general, the containment is strict since in that case X-(1/2p) E R p ,..,., Rq for
any q ? 2p. Of course the set n;~l R p is nonvoid since it contains R+ which
is nonvoid by hypothesis. On the other hand, if R1 C La/X, JL) (as is the case
for polynomial rational functions on [0, 1]) then it is clear that R p = Rq

for allp, q ? 1.

DEFINITION 2. Let E be a normed linear space. A subset M C E is called
boundedly weakly sequentially compact (b.w.s.c.) if every bounded sequence
in M admits a subsequence converging to some element of M with respect
to the weak topology on E (see [6, p. 121]).

Remark 1. Using standard arguments (see [7, p. 97, Corollary 2.2] for
example, noting that b.w.s.c. is all that is needed in the proof) it is readily
shown that a b.w.s.c. subset AI of a normed linear space E always has the
property that each element of E has a best approximation in M. As will be
seen, b.w.s.c. seems to be the strongest compactness property satisfied by the
set R for 1 < P < 00.

The proofs of the following lemmas are simple modifications of arguments
found in [1] and have thus been omitted. In each case p is arbitrary but fixed
with 1 :;:;; p < 00.

LEMMA 1. Assume (*) holds and let {rj} be a sequence in R such that {II 1'1 lip}
is bounded and II D j 1100 = 1 for all j where 1'1 = Nj/Dj . Then {II N j 1100} is also
bounded.

LEMMA 2. Assume (*) holds and let {rj} C R be bounded. Then there exists
a subsequence {rj) and an r E R such that rj. ~ r uniformly on each closed
subset of a set whose complement has measure zero. In particular, rjl' ~ r
JL-almost everywhere (JL.a.e.).

We now have the following:

THEOREM. Assume (*) holds and let p be arbitrary but fixed with
l:;:;;p < 00. Then
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(a) R is the closure of R+ with respect to the norm topology on L']; .

(b) Each f E L p has a best approximation in R.

(e) Ifp > 1 then R is b.w.s.c. in L p and is the weak sequential closure ()lR+
(i.e., R = {<p E L p I there exists a sequence in R+ converging to <p with
respect to the weak topology}).

Proof (a) Let {rj} be a sequence in R and suppose f E L p is such that
lif - rj lip ~> O. Then {rj} is bounded and by Lemma 2 there is a subsequence
(which we do not relabel) and an l' E R such that rj -'» r p.,.a.e. and hence in
measure also. But rj -'» f in measure [5, p. 201] and so f = r. Thus R is
closed and hence contains the closure of R-c.

To obtain the reverse inclusion, let r = N/D E R be arbitrary where
D(x) ? 0 for all x E X. Define {rj} C R+ by rj = N;/D j where N j = Nand
Dj = D + h/j for j = 1, 2, ... where h E!!fi is such that hex) > 0 for all x E X
(h exists since R+ oF 0). Then rj -'» r p.,.a.e. and the inequality

I r;(x) - r(x)[p = I N(x) h(x)/(jD2(x) + D(x) h(x))IP ;;( I N(x)/D(x)!J'

(p.,.a.e.) together with the Lebesgue dominated convergence theorem implies
that II rj - l' rip -->- O. Thus (a) is proved.

(b) LetfE Lp and choose {rJ C R such that Ilf - rj lip -'» inf"ER iff - 1'111"
As in (a), a subsequence of {rj} converges f-t.a.e. to some r E R and applying
Fatou's lemma we conclude that r is a best approximation to f from R.

ec) The proof of (c) follows directly from Lemma 2 and the fact that for
1 < p < co, if a sequence in L p is bounded and converges in measure then it
converges with respect to the weak topology to the same limit [5, p. 2071­

Q.E.D.
An immediate corollary follows:

COROLLARY. Il(*) holds then eachfE L p has a best approximation in R+
if and only if R+ is closed (i.e., if alld only if R = R+).

Remark 2. A suggestive interpretation of the corollary is that R+ is dosed
ifand only if whenever Ix I N/D IP df-t < co with D(x) :;;;:: 0 for all xE X; then
there exists No/Do E R+ such that No/Do = N/D ,u.a.e. Thus "singularities"
of N/D are "removable."

Remark 3. In [1] Cheney and Goldstein give the following condition on
R+ guaranteeing the existence of best approximations.

Condition. If N E ",11' and DE!$ andfE L p are such that
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for all closed subsets S C ZeD)" then there exists No E% and Do E!?) with
Do(x) > 0 for all x E X such that Ilf - NojDo 1121 < t.

If we weaken this condition by only requiring it to hold for DE!?) with
D(x) ;;:, 0 for all x E X then the condition is both necessary and sufficient for
the existence of best approximations in R+ [we still assume (*) holds]. To see
this, first note that since

sup f If - NJD 1
21 df-t = f If - NJD IP df-t

SCZ(D) " S x
sclosed

the condition is equivalent to "If l' E R is such that I[f - l' 1121 < t then there
is an 1'0 E R+ such that Ilf - 1'011 21 < t." Now suppose R+ is closed (i.e., best
approximations always exist in R+). Then by Remark 1, for any l' E R there is
an 1'0 E R+ such that I' = 1'0 f-t.a.e. so that the condition holds. To prove
sufficiency (as in [1]) let t = infrER Ilf - 1'1121 = infrER+ Ilf - l' lip.

Remark 4. Dunham [3] has independently and simultaneously arrived at
existence results similar to (b) of the theorem for a generalized norm defined
by a(J) = fx p(J) df-t where p is some nonnegative continuous function on
the real line and where f is a bounded measurable function on X. He also
obtains (with some restrictions on p) a sufficient condition completely
analogous to the one of Remark 3. The extension of the results of this paper
to that more general setting will be considered in a later paper.

Remark 5. Blatter [2] showed that if one considers the family R* n Ll'
where R* = {NjD IN E %, DE!?)} then R* n Ll' is approximatively compact
for 1 < p < 00. That is, if f E L p and {rj} C R* n Ll' are such that
111- rj 111' -+ infrER*nL Ilf - 1'111' then some subsequence of {rj} converges in
the norm topology toPsome element of R* n L p • A trivial modification of
this result yields (b) of the theorem for the case 1 < p < 00.

Also, for 1 < p < 00 it is clear that (b) is a simple consequence of (c)
in the theorem. However, as the following example shows, R is not necessarily
b.w.s.c. if p = 1. The example also shows that for 1 < P < w R is not
boundedly compact so that no strengthening of part (c) of the theorem seems
possible.

EXAMPLE 2. Let X = [0,1], f-t be Lebesque measure, and R = R+ =
Rmn[o, 1] - {(ao + ... + ajxj)j(bo+ ... + bkx k)1j < n, k < m and bo + ...
+ bkxk > 0 for all x E [0, I]) where m :;:, 1. Let 1 < p < w be given and
define {rj} C R+ by rj = jj(jPx + 1). Then II rj liP = f~jPj(jPx + 1) dx =
(p - 1)-1(1 - (P + 1)1-1') -+ (p _1)-1 > 0 while r;(x) -+ ° except for
x = O. But since II rj lip -+ 0, no subsequence could converge (in norm) to
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zero which is the only possible limit. Thus RT is not boundedly compact if
1 < p < ro.

Similarly the sequences l/Ux + 1) andJ/(log(l +j)(jx + 1» are counter
examples for p = 00 and p = 1, respectively. The latter example also shows
that R is not b.w.s.c. in L 1 , in general, since no subsequence of
J/(log(l + j)(jx + 1» converges to zero with respect to the weak topology;
otherwise I = f~j/(log(l +j) . (jx + 1» dx ---+ O-a contradiction.
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