L, Rational Approximation

JERRY M. WOLFE

Department of Mathematics, University of Oregon, Eugene, Oregon Communicated by E. W. Cheney

We shall consider here the following approximation problem. Let X denote a compact Hausdorff space, μ a regular Borel measure on X, and let $\{g_1, ..., g_n\}$ and $\{h_1, ..., h_m\}$ be fixed sets of linearly independent real-valued continuous functions on X. Furthermore, let $\mathcal{N} = \text{span}\{g_1, ..., g_n\}$, $\mathcal{D} = \text{span}\{h_1, ..., h_m\}$, and $R^+ = \{N/D \mid N \in \mathcal{N}, D \in \mathcal{D} \text{ and } D(x) > 0 \text{ for all } x \in X\}$. Assume R^+ is nonvoid. Then given $f \in L_p(X, \mu)$ with $1 \leq p < \infty$, does there exist an $r_0 \in R^+$ such that $||f - r_0||_p = \inf_{r \in R^+} ||f - r||_p$?

As the following example shows, the answer to this question is negative in general.

EXAMPLE 1. Let X = [0, 1], $p \ge 1$, μ the Lebesgue measure on [0, 1], $f(x) = x^{-\frac{1}{2}p}$ and $R^+ = \{a/(b + cx^{\frac{1}{2}p}) \mid b + cx^{\frac{1}{2}p} > 0$ for all $x \in [0, 1]\}$. Then the sequence $\{r_n\} = \{1/(x^{\frac{1}{2}p} + n^{-1})\} \subset R^+$ satisfies $||f - r_n||_p \to 0$. (To see this, note that $|r_n - f| = 1/x^{\frac{1}{2}p}(1 + nx^{\frac{1}{2}p})$ is monotone decreasing and pointwise convergent to zero on (0, 1].) But $f \notin R^+$ so that f has no best approximation in R^+ . Clearly, this R^+ has the defect that it is not a closed subset of $L_p[0, 1]$.

Under an assumption given below we will explicitly determine the closure of R^+ in the appropriate L_p space, and show that best approximations always exist in the closure. As a corollary we will be able to show that a sufficient condition given by Cheney and Goldstein in [1] (and generalized by Dunham in [3]) for the existence of best approximations in R^+ is, in fact, both necessary and sufficient (after a slight weakening). The results presented here are from the author's doctoral thesis [4].

The analysis will be carried out under the following assumption on the measure space (X, μ) and the set \mathcal{D} . (See [2] and [3] also.)

Assumption (*). If $D \in \mathcal{D}$ is such that $D \neq 0$, then $\mu(Z(D)) = 0$ where $Z(D) = \{x \in X \mid D(x) = 0\}.$

Note that (*) excludes the important case when X is a discrete set and μ is counting measure. We shall consider this problem in a forthcoming paper.

DEFINITION 1. For arbitrary but fixed p with $1 \le p \le \infty$, R shall denote the set $\{N/D \mid N \in \mathcal{N}, D \in \mathcal{D}, D(x) \ge 0$ for all $x \in X$ and $\int_X |N/D|^p d\mu < \infty$.

Note that by (*) every element of the form N/D with $D \neq 0$ is defined except perhaps on a set of measure zero so that R may be considered to be a subset of $L_n(X, \mu)$ (which we henceforth shorten to L_n).

Also it is clear that the set R depends on p. Let this dependence be denoted by R_p . Since $L_p(X, \mu) \subset L_q(X, \mu)$ when p > q and X is a finite measure space, it follows that $R_p \subset R_q$ if p > q. Moreover, Example 1 above shows that, in general, the containment is strict since in that case $x^{-(1/2p)} \in R_p \sim R_q$ for any $q \ge 2p$. Of course the set $\bigcap_{p=1}^{\infty} R_p$ is nonvoid since it contains R^+ which is nonvoid by hypothesis. On the other hand, if $R_1 \subset L_{\infty}(X, \mu)$ (as is the case for polynomial rational functions on [0, 1]) then it is clear that $R_p = R_q$ for all $p, q \ge 1$.

DEFINITION 2. Let E be a normed linear space. A subset $M \subseteq E$ is called boundedly weakly sequentially compact (b.w.s.c.) if every bounded sequence in M admits a subsequence converging to some element of M with respect to the weak topology on E (see [6, p. 121]).

Remark 1. Using standard arguments (see [7, p. 97, Corollary 2.2] for example, noting that b.w.s.c. is all that is needed in the proof) it is readily shown that a b.w.s.c. subset M of a normed linear space E always has the property that each element of E has a best approximation in M. As will be seen, b.w.s.c. seems to be the strongest compactness property satisfied by the set R for 1 .

The proofs of the following lemmas are simple modifications of arguments found in [1] and have thus been omitted. In each case p is arbitrary but fixed with $1 \le p < \infty$.

LEMMA 1. Assume (*) holds and let $\{r_j\}$ be a sequence in R such that $\{||r_j||_p\}$ is bounded and $||D_j||_{\infty} = 1$ for all j where $r_j = N_j/D_j$. Then $\{||N_j||_{\infty}\}$ is also bounded.

LEMMA 2. Assume (*) holds and let $\{r_j\} \subset R$ be bounded. Then there exists a subsequence $\{r_{j_k}\}$ and an $r \in R$ such that $r_{j_k} \to r$ uniformly on each closed subset of a set whose complement has measure zero. In particular, $r_{j_k} \to r$ μ -almost everywhere (μ .a.e.).

We now have the following:

THEOREM. Assume (*) holds and let p be arbitrary but fixed with $1 \leq p < \infty$. Then

- (a) R is the closure of R^+ with respect to the norm topology on L_x .
- (b) Each $f \in L_p$ has a best approximation in R.
- (c) If p > 1 then R is b.w.s.c. in L_p and is the weak sequential closure of R^+ (i.e., $R = \{\varphi \in L_p \mid \text{there exists a sequence in } R^+ \text{ converging to } \varphi \text{ with respect to the weak topology}\}$).

Proof. (a) Let $\{r_j\}$ be a sequence in R and suppose $f \in L_p$ is such that $||f - r_j||_p \to 0$. Then $\{r_j\}$ is bounded and by Lemma 2 there is a subsequence (which we do not relabel) and an $r \in R$ such that $r_j \to r \mu$.a.e. and hence in measure also. But $r_j \to f$ in measure [5, p. 201] and so f = r. Thus R is closed and hence contains the closure of R^{\perp} .

To obtain the reverse inclusion, let $r = N/D \in R$ be arbitrary where $D(x) \ge 0$ for all $x \in X$. Define $\{r_j\} \subset R^+$ by $r_j = N_j/D_j$ where $N_j = N$ and $D_j = D + h/j$ for j = 1, 2,... where $h \in \mathscr{D}$ is such that h(x) > 0 for all $x \in X$ (*h* exists since $R^+ \neq \emptyset$). Then $r_j \rightarrow r \mu$.a.e. and the inequality

$$|r_j(x) - r(x)|^p = |N(x)h(x)/(jD^2(x) + D(x)h(x))|^p \leq |N(x)/D(x)|^p$$

(μ .a.e.) together with the Lebesgue dominated convergence theorem implies that $||r_j - r||_p \to 0$. Thus (a) is proved.

(b) Let $f \in L_p$ and choose $\{r_j\} \subset R$ such that $||f - r_j||_p \to \inf_{r \in R} ||f - r||_p$. As in (a), a subsequence of $\{r_j\}$ converges μ .a.e. to some $r \in R$ and applying Fatou's lemma we conclude that r is a best approximation to f from R.

(c) The proof of (c) follows directly from Lemma 2 and the fact that for $1 , if a sequence in <math>L_p$ is bounded and converges in measure then it converges with respect to the weak topology to the same limit [5, p. 207]. O.E.D.

An immediate corollary follows:

COROLLARY. If (*) holds then each $f \in L_p$ has a best approximation in R^+ if and only if R^+ is closed (i.e., if and only if $R = R^+$).

Remark 2. A suggestive interpretation of the corollary is that R^+ is closed if and only if whenever $\int_X |N/D|^p d\mu < \infty$ with $D(x) \ge 0$ for all $x \in X$, then there exists $N_0/D_0 \in R^+$ such that $N_0/D_0 = N/D$ μ .a.e. Thus "singularities" of N/D are "removable."

Remark 3. In [1] Cheney and Goldstein give the following condition on R^+ guaranteeing the existence of best approximations.

Condition. If $N \in \mathcal{N}$ and $D \in \mathcal{D}$ and $f \in L_p$ are such that

$$\left[\int_{\mathcal{S}} |f - N/D|^p \, d\mu\right]^{1/p} \leq t$$

for all closed subsets $S \subseteq Z(D)^c$ then there exists $N_0 \in \mathcal{N}$ and $D_0 \in \mathcal{D}$ with $D_0(x) > 0$ for all $x \in X$ such that $||f - N_0/D_0||_p \leq t$.

If we weaken this condition by only requiring it to hold for $D \in \mathscr{D}$ with $D(x) \ge 0$ for all $x \in X$ then the condition is both necessary and sufficient for the existence of best approximations in R^+ [we still assume (*) holds]. To see this, first note that since

$$\sup_{\substack{S \subset Z(D)^{\sigma} \\ S \text{ closed}}} \int_{S} |f - N/D|^{p} d\mu = \int_{X} |f - N/D|^{p} d\mu$$

the condition is equivalent to "If $r \in R$ is such that $||f - r||_p \leq t$ then there is an $r_0 \in R^+$ such that $||f - r_0||_p \leq t$." Now suppose R^+ is closed (i.e., best approximations always exist in R^+). Then by Remark 1, for any $r \in R$ there is an $r_0 \in R^+$ such that $r = r_0 \mu$.a.e. so that the condition holds. To prove sufficiency (as in [1]) let $t = \inf_{r \in R} ||f - r||_p = \inf_{r \in R^+} ||f - r||_p$.

Remark 4. Dunham [3] has independently and simultaneously arrived at existence results similar to (b) of the theorem for a generalized norm defined by $\sigma(f) = \int_X \rho(f) d\mu$ where ρ is some nonnegative continuous function on the real line and where f is a bounded measurable function on X. He also obtains (with some restrictions on ρ) a sufficient condition completely analogous to the one of Remark 3. The extension of the results of this paper to that more general setting will be considered in a later paper.

Remark 5. Blatter [2] showed that if one considers the family $R^* \cap L_p$ where $R^* = \{N/D \mid N \in \mathcal{N}, D \in \mathcal{D}\}$ then $R^* \cap L_p$ is approximatively compact for $1 . That is, if <math>f \in L_p$ and $\{r_i\} \subset R^* \cap L_p$ are such that $\|f - r_j\|_p \to \inf_{r \in R^* \cap L_p} \|f - r\|_p$ then some subsequence of $\{r_j\}$ converges in the norm topology to some element of $R^* \cap L_p$. A trivial modification of this result yields (b) of the theorem for the case 1 .

Also, for 1 it is clear that (b) is a simple consequence of (c) in the theorem. However, as the following example shows, <math>R is not necessarily b.w.s.c. if p = 1. The example also shows that for $1 \le p \le \infty R$ is not boundedly compact so that no strengthening of part (c) of the theorem seems possible.

EXAMPLE 2. Let X = [0, 1], μ be Lebesque measure, and $R = R^+ = R_m^n[0, 1] \equiv \{(a_0 + \dots + a_j x^j) | (b_0 + \dots + b_k x^k) | j \leq n, k \leq m \text{ and } b_0 + \dots + b_k x^k > 0 \text{ for all } x \in [0, 1]\}$ where $m \geq 1$. Let $1 be given and define <math>\{r_j\} \subset R^+$ by $r_j = j/(j^p x + 1)$. Then $||r_j||^p = \int_0^1 j^p/(j^p x + 1) dx = (p-1)^{-1}(1 - (j^p + 1)^{1-p}) \rightarrow (p-1)^{-1} > 0$ while $r_j(x) \rightarrow 0$ except for x = 0. But since $||r_j||_p \rightarrow 0$, no subsequence could converge (in norm) to

zero which is the only possible limit. Thus R^+ is not boundedly compact if 1 .

Similarly the sequences 1/(jx + 1) and $j/(\log(1 + j)(jx + 1))$ are counter examples for $p = \infty$ and p = 1, respectively. The latter example also shows that R is not b.w.s.c. in L_1 , in general, since no subsequence of $j/(\log(1 + j)(jx + 1))$ converges to zero with respect to the weak topology; otherwise $1 = \int_0^1 j/(\log(1 + j) \cdot (jx + 1)) dx \to 0$ -a contradiction.

References

- 1. E. W. CHENEY AND A. A. GOLDSTEIN, Mean-square approximation by generalized rational functions, *Math. Zeithschr.* 95 (1967), 232-241.
- J. BLATTER, Approximative Kompaktheit Verallgemeinerter Rationaler Functionen, J. Approximation Theory, 1 (1968), 85-93.
- 3. C. B. DUNHAM, Existence of best mean rational approximations, J. Approximation Theory 4 (1971), 269–273.
- 4. J. M. WOLFE, "The Existence, Uniqueness, and Computation of Best Approximations," Thesis, University of Washington, 1972.
- 5. E. HEWITT AND K. STROMBERG, "Real and Abstract Analysis," Springer-Verlag, New York, 1969.
- 6. L. A. LIUSTERNIK AND V. J. SOBOLEV, "Elements of Functional Analysis," Fred. Ungar, New York, 1961.
- 7. I. SINGER, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, New York, 1970.